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ABSTRACT 

Traditional hyperspectral unmixing is focused on subpixel material composition extraction for low and moderate 
resolution imagery. Technological advances are making affordable hyperspectral imagers that can be used for very high 
spatial resolution imaging in many applications. A question that we want to address in this work is whether a traditional 
hyperspectral image analysis technique like unmixing still has value in the context of very high spatial resolution 
hyperspectral imaging (VHSR-HSI). In this paper, we will present preliminary results on how unsupervised hyperspectral 
unmixing algorithms can be used to extract spectral signatures of materials in a VHSR-HSI to map their spatial 
distribution and capture their spectral variability. Examples using hyperspectral images collected at close range using a 
standoff hyperspectral imager and an unmanned airborne system are used to illustrate our approach. 
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1. INTRODUCTION 
Unmixing is a valuable analysis technique to analyze satellite and airborne hyperspectral imagery of low to moderate 
spatial resolution. As imagers become more affordable, very high spatial resolution hyperspectral imaging is used in 
laboratory, computer vision, standoff, close-range and UxS remote sensing applications [1, 2, 3]. An interesting question 
we are trying to address in this work is if hyperspectral image processing techniques designed for moderate to 
low-resolution imagery can still be of value in very high spatial resolution hyperspectral imaging (VHSR-HSI). 

In traditional HSI analysis, the linear mixing model assumes that the measured pixel spectral signature is the linear 
convex combination of the spectral signatures of the endmember signatures. However, in close-range imaging, the spatial 
resolution may be in the centimeter range, which will result in purer pixels across the scene so one could question why to 
use unmixing analysis in such an application. In this paper, we study the use of unmixing techniques to extract the 
spectral signatures present in the image and their spatial distribution. We also study the use of a simple variation of the 
Pixel Purity Index (PPI) endmember extraction algorithm where pixel votes are counted for maximum or minimum 
occurrences rather than just maximum like in traditional PPI and the criteria on selecting the number of endmember is by 
selecting the pixels that receive the top 2% of the votes. Clustering is then used to group similar endmember signatures 
and extract endmember classes that capture the spectral variability of a particular material signature. Abundance maps are 
obtained for each endmember class to obtain the spatial distribution of the material. 

We study the use of unmixing with very high-resolution hyperspectral images collected of a vegetation plot from the 
International Tundra Experiment (ITEX) - Arctic Observatory Network (AON) in Utqiaġvik (formerly Barrow), Alaska 
and from Avocados fields in Antioquia, Colombia using a dual HySpex Mjolnir VS-620 hyperspectral imager on board of 
a drone. 



2. METHODS 
2.1 Hyperspectral Unmixing 

Hyperspectral remote sensing involves capturing spectral data from many contiguous high spectral resolution bands 
across the electromagnetic spectrum, resulting in a spectral signature for each pixel in an image. The spectral signature of 
a pixel is a mixture of the spectral signatures of the various materials present in the instantaneous field of view of the 
sensor. The linear mixture model represents the measured signature as a linear convex combination of the spectral 
signature of the materials present in the sensor's field of view. 

The linear unmixing aims to extract from the measured mixed spectral signature the number of endmembers, their 
spectral signatures, and their abundances or fractional area coverage within each pixel of the given hyperspectral image. 
By identifying the endmembers and their abundances, unmixing enables the identification and mapping of different 
materials within a scene, which is useful for numerous remote sensing applications. Various techniques have been 
proposed in the literature to address the unmixing problem [4, 5, 6]. 

Traditional methods for unmixing involve a two-step approach where first endmembers are determined and second, 
abundances are computed. In this work, a modified version of the pixel purity index (PPI) endmember extraction 
approach is used for endmember extraction. PPI generates random vectors or skewers in the spectral space (or feature 
space depending on the implementation) [7, 8]. Each pixel in the hyperspectral image is projected onto the random 
vectors and the number of times a particular pixel is selected as a maximum or minimum value in the process is recorded. 
Pixel signatures with high number of votes are considered candidates for endmember. 

Once endmembers are available, the next step in unmixing is abundance estimation. Let 

= [ I … I] 

be the matrix of endmembers where I is the matrix containing the signatures of the spectral endmembers belonging to the 
i-th endmember class. The abundances for individual spectral endmembers is computed by solving a fully constrained 
linear least squares problem: 

I = arg min ǁ − ǁ 
I nI 
II 

where is the pixel spectral signatures, and is the vector of spectral endmember abundances. Abundances are constrained 
to be positive and sum to one for a pixel. The abundances for an individual endmember class I is the sum of the 
abundances of the individual spectral endmembers. Multiple algorithms are available to solve this problem, see [9] as an 
example. 

2.2 Data 
Two VHSR-HSI data sets were used in this analysis. True color composites for these images are shown in Figure 1. The 
first image is from an ITEX-AON plot collected in Utqiaġvik (formerly Barrow) in summer of 2017. This image was 
collected using a SOC710-VP stand off hyperspectral imager from Surface Optics Corporation. The image is 696 lines by 
520 samples, and 128 bands at 4.96 nm spectral resolution ranging from 375.25 nm to at 1038.25 nm. The second image 
is a UAV image from the Avocado trail in La Selva Research Center of the Colombian Agricultural Research Corporation 
(AGROSAVIA) in Rionegro, Antioquia, Colombia. The site is at 2093 meters above sea level. The region experiences an 
average annual temperature of 17°C, precipitation of 1917 mm, and relative humidity of 78%. The study was conducted 
in the Low Montane Humid Forest (bh-MB) ecological life zone, in the Rionegro Association cartographic unit, on a low 
alluvial terrace of the Rionegro River. The plants were studied over 19 months with wet soil conditions. The image was 
collected using a Dual HySpex Mjolnir VS-620, which combines a HySpex Mjolnir V-1240 (400-1000 nm, 200 bands at 
3.0nm resolution) and HySpex Mjolnir S-620 (970-2500 nm with 300 bands at 5.1nm resolution) into a common housing. 
A portion of the full scene used is here and is comprised of 181 lines, 146 samples and 360 bands and. Table 1 
summarized the information related to each image. 



Table 1: Hyperspectral images: Details from ITEX vegetation and Avocados images. 
Characteristics ITEX vegetation Avocados image 
Sensor(s) used SOC710-VP Dual HySpex Mjolnir VS-620 
Image Size 696 lines, 520 samples, 128 bands 181 lines, 146 samples, 360 

bands 
Wavelength range 375.25 – 1038.25 nm 400 – 2500 nm 
Spectral resolution 4.96 nm 5.1 nm 
Location Alaska, US Antioquia, Colombia 
Collection date Summer, 2017 November, 2021 

(a) (b) 
Figure 1: Color composites: (a) ITEX plot and (b) Avocados image. 

3. EXPERIMENTAL RESULTS 

3.1 Unmixing Results 

We used 10,000 projections in our PPI implementation. Figure 2 (a) and (b) present the PPI votes histogram for the ITEX 
plot and the Avocados images respectively. The vertical scale presents the number of pixels and the horizontal scale the 
number of votes received. The vertical scale is capped at 10 pixels in the plots shown in Figure 2 (a) and (b), as most 
pixels in the image receive no votes or very few votes and we wanted to highlight those that actually received votes. 
Figure 2 (c) and (d) show binary images highlighting pixels that received any votes during the process. Only 1133 pixels 
out of 362k pixels in the ITEX plot image received any votes and 949 out of 26k pixels for the Avocados image. 

Spectral endmembers were selected by choosing those signatures that have a number of votes above a threshold. A 
threshold of 130 votes was selected for the ITEX plot and 165 votes for the Avocados image. These thresholds were 
selected by trial and error. Developing a more systematic approach is part of future work. Using these thresholds resulted 
in 17 spectral endmembers for the ITEX plot image and 20 for the Avocados image. Since many of the extracted spectral 
endmembers were very similar, k-means clustering using the Euclidean distance was used to group extracted signatures 
into endmember classes. The number of endmember classes (clusters) was selected manually. Clustering spectral 
endmembers enabled us group similar to endmembers together, capturing endmember spectral variability, and facilitating 
analysis and interpretation. The endmember classes spectral signatures and abundance maps are shown in Figure 3: 
Endmember classes 



and abundances for ITEX plot image. Figure 3 for the ITEX plot and Figure 4 for the Avocados image. People working in 
those areas gave the labels for the endmember classes after analyzing the abundance maps. 

(a) (b) 

(c) (d) 
Figure 2. PPI results: (a) histogram for ITEX plot, (b) histogram for the Avocados image, binary map of pixel receiving at least one vote 
(c) ITEX plot, (d) Avocados image. 

Color fractional maps [10] (RGB composites using abundance maps) are used to visualize spatial distribution and mixtures of 
endmember classes. The color fractional map for the ITEX plot is show in Figure 5(a). The fractional map was constructed by input the 
abundance for Cassiope Tetragona in the Green channel, and the abundance maps for Lichen Mixture 1 and 2 in the Red and Blue 
channels respectively. For the Avocados image (see Figure 5(b)), the color fractional map was generated by combining the abundances 
for Artifact 1 and 2 and used as input to the Red channel, Avocado plants to the Green channel, and Brighter avocado leaves to the 
Blue channel. 
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Figure 3: Endmember classes and abundances for ITEX plot image. 
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Figure 4: Endmember classes and abundances for Avocados image. 

Table 2: Number of spectral endmembers per endmember class. 



TEX Vegetation Avocado Trail 
Signature # of signatures Signature # of signatures 
Shadow 7 Avocado plants 3 
White standard 3 Avocado pots 2 
Cassiope Tetragona 2 Avocado Artifact 1 6 
Lichen Mixture 1 1 Avocado Artifact 2 5 
Lichen Mixture 2 1 Brighter avocado leaves 3 
Wooden Marker frame 2 Unknown 1 
Wood marker 1 



3.2 Discussion (a) 

(b) 
Figure 5: Fractional Maps: (a) ITEX plot, (b) Avocados 
image. 

Figure 3 and Figure 4 illustrate the extracted endmember classes and their corresponding abundance maps, for the two 
images. The approach was capable of extracting the vegetation signatures in both images. 

In Figure 3, for the ITEX plot image, the endmember class with the higher number of spectral signatures was shadows 
with seven spectral endmembers. We were able to capture the shadow endmember because of the modification to PPI to 
include votes for the minimum in the projection. In experiments not included in the paper, standard PPI implementations 
that only count votes for the maximum do not extract the shadow endmember neither do other standard endmember 
extraction algorithms that we tried in for problem. Notice that the abundance map points to the significant presence of 
this endmember across the image, which is also shown in Figure 1(a). 

An interesting finding for the Avocados image were the “Artifact” endmembers shown in Figure 4. It seems that there is a 
miss registration error between the two instruments in the Dual HySpex Mjolnir VS-620. For instance, the VNIR 
signature collected with HySpex Mjolnir V-1240 seems to be Artifact 1 while Artifact 2 seems to be the SWIR signature 
collected with HySpex Mjolnir S-620. One can merge the signature of Artifact 1 with 2 and get the Avocado spectral 
endmember signatures. 

Another interesting result is that the fractional color maps are dominated by pure red, green or blue pixels. There are no 
pixels with color mixtures (e.g. Green + Red = Yellow) pointing to the purity of the pixels in the image as expected for 
VHSR-HSI. 



4. CONCLUSIONS 
Endmember extraction techniques offer valuable means for extracting spectral signatures of materials in a VHSR-HSI 
and capture their spectral variability. The abundance maps provide information on the spatial distribution of the pure 
materials in the image and most abundance values seem to be close to one as expected for VHSR-HSI. These abundance 
maps may provide simpler features for other processing stages in the HSI exploitation pipeline. The effectiveness of 
unmixing techniques is especially evident when analyzing intricate hyperspectral images like the one for the ITEX plot, 
which has significant spatial complexities due to the way materials are distributed in the image an illumination issues. 

Estimating the number of endmembers using the PPI votes histogram is an interesting proposition. Clearly, we need more 
work to figure out systematic ways to deal with threshold selection but it address limitations of methods commonly used 
in the literature that use versions of a matrix rank. 

These preliminary results show the potential the unmixing can have for VHSR-HSI. 
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